Affiliation:
1. Google, CA
2. Washington University in St. Louis, MO
3. University of California at San Diego
Abstract
Greedy algorithms are practitioners’ best friends—they are intuitive, are simple to implement, and often lead to very good solutions. However, implementing greedy algorithms in a distributed setting is challenging since the greedy choice is inherently sequential, and it is not clear how to take advantage of the extra processing power.
Our main result is a powerful sampling technique that aids in parallelization of sequential algorithms. Armed with this primitive, we then adapt a broad class of greedy algorithms to the MapReduce paradigm; this class includes maximum cover and submodular maximization subject to
p
-system constraint problems. Our method yields efficient algorithms that run in a logarithmic number of rounds while obtaining solutions that are arbitrarily close to those produced by the standard sequential greedy algorithm. We begin with algorithms for modular maximization subject to a matroid constraint and then extend this approach to obtain approximation algorithms for submodular maximization subject to knapsack or
p
-system constraints.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modelling and Simulation,Software
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献