Evolutionary testing in the presence of loop-assigned flags

Author:

Baresel André1,Binkley David2,Harman Mark3,Korel Bogdan4

Affiliation:

1. DaimlerChrysler AG, Berlin

2. Loyola College, Baltimore, MD

3. Brunel University, Middlesex, UK

4. Illinois Institute of Technology, Chicago, IL

Abstract

Evolutionary testing is an effective technique for automatically generating good quality test data. However, for structural testing, the technique degenerates to random testing in the presence of flag variables, which also present problems for other automated test data generation techniques. Previous work on the flag problem does not address flags assigned in loops.This paper introduces a testability transformation that transforms programs with loop--assigned flags so that existing genetic approaches can be successfully applied. It then presents empirical data demonstrating the effectiveness of the transformation. Untransformed, the genetic algorithm flounders and is unable to find a solution. Two transformations are considered. The first allows the search to find a solution. The second reduces the time taken by an order of magnitude and, more importantly, reduces the slope of the cost increase; thus, greatly increasing the complexity of the problem to which the genetic algorithm can be applied. The paper also presents a second empirical study showing that loop--assigned flags are prevalent in real world code. They account for just under 11% of all flags.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. British Standards Institute. BS 7925-1 vocabulary of terms in software testing 1998. British Standards Institute. BS 7925-1 vocabulary of terms in software testing 1998.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PyTPU: Migration of Python Code for Heterogenous Acceleration with Automated Test Generation;2023 IEEE/ACIS 8th International Conference on Big Data, Cloud Computing, and Data Science (BCD);2023-12-14

2. JavaScript SBST Heuristics to Enable Effective Fuzzing of NodeJS Web APIs;ACM Transactions on Software Engineering and Methodology;2023-09-28

3. Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts;2022 IEEE International Conference on Software Maintenance and Evolution (ICSME);2022-10

4. Enhancing Search-based Testing with Testability Transformations for Existing APIs;ACM Transactions on Software Engineering and Methodology;2022-01-31

5. Encoding the certainty of boolean variables to improve the guidance for search-based test generation;Proceedings of the Genetic and Evolutionary Computation Conference;2021-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3