GPLADD

Author:

Outkin Alexander V.1ORCID,Eames Brandon K.1,Galiardi Meghan A.1,Walsh Sarah2,Vugrin Eric D.1,Heersink Byron3,Hobbs Jacob1,Wyss Gregory D.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM

2. Georgia Institute of Technology, Atlanta, GA

3. Ohio State University, Columbus, OH

Abstract

Trust in a microelectronics-based system can be characterized as the level of confidence that a system is free of subversive alterations made during system development, or that the development process of a system has not been manipulated by a malicious adversary. Trust in systems has become an increasing concern over the past decade. This article presents a novel game-theoretic framework, called GPLADD (Graph-based Probabilistic Learning Attacker and Dynamic Defender), for analyzing and quantifying system trustworthiness at the end of the development process, through the analysis of risk of development-time system manipulation. GPLADD represents attacks and attacker-defender contests over time. It treats time as an explicit constraint and allows incorporating the informational asymmetries between the attacker and defender into analysis. GPLADD includes an explicit representation of attack steps via multi-step attack graphs, attacker and defender strategies, and player actions at different times. GPLADD allows quantifying the attack success probability over time and the attacker and defender costs based on their capabilities and strategies. This ability to quantify different attacks provides an input for evaluation of trust in the development process. We demonstrate GPLADD on an example attack and its variants. We develop a method for representing success probability for arbitrary attacks and derive an explicit analytic characterization of success probability for a specific attack. We present a numeric Monte Carlo study of a small set of attacks, quantify attack success probabilities, attacker and defender costs, and illustrate the options the defender has for limiting the attack success and improving trust in the development process.

Funder

LLC

U.S. Department of Energy National Nuclear Security Administration

National Technology and Engineering Solutions of Sandia

Honeywell International, Inc.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3