Measuring the Semantic Uncertainty of News Events for Evolution Potential Estimation

Author:

Luo Xiangfeng1,Xuan Junyu2,Lu Jie3,Zhang Guangquan3

Affiliation:

1. Shanghai University, China

2. Shanghai University and University of Technology Sydney, Sydney, NSW, Australia

3. University of Technology Sydney, Sydney, NSW, Australia

Abstract

The evolution potential estimation of news events can support the decision making of both corporations and governments. For example, a corporation could manage its public relations crisis in a timely manner if a negative news event about this corporation is known with large evolution potential in advance. However, existing state-of-the-art methods are mainly based on time series historical data, which are not suitable for the news events with limited historical data and bursty properties. In this article, we propose a purely content-based method to estimate the evolution potential of the news events. The proposed method considers a news event at a given time point as a system composed of different keywords, and the uncertainty of this system is defined and measured as the Semantic Uncertainty of this news event. At the same time, an uncertainty space is constructed with two extreme states: the most uncertain state and the most certain state. We believe that the Semantic Uncertainty has correlation with the content evolution of the news events, so it can be used to estimate the evolution potential of the news events. In order to verify the proposed method, we present detailed experimental setups and results measuring the correlation of the Semantic Uncertainty with the Content Change of news events using collected news events data. The results show that the correlation does exist and is stronger than the correlation of value from the time-series-based method with the Content Change. Therefore, we can use the Semantic Uncertainty to estimate the evolution potential of news events.

Funder

China Scholarship Council

Australian Research Council (ARC) under discovery

National Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adapting the influences of publishers to perform news event detection;Journal of Information Science;2021-10-13

2. Web event evolution trend prediction based on its computational social context;World Wide Web;2020-03-14

3. W2E;Proceedings of the 27th ACM International Conference on Information and Knowledge Management;2018-10-17

4. Analyzing evolving stories in news articles;International Journal of Data Science and Analytics;2017-12-21

5. Semi-Supervised Collective Matrix Factorization for Topic Detection and Document Clustering;2017 IEEE Second International Conference on Data Science in Cyberspace (DSC);2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3