Abstract
A social event is an occurrence that involves lots of people and is accompanied by an obvious rise in human flow. Analysis of social events has real-world importance because events bring about impacts on many aspects of city life. Traditionally, detection and impact measurement of social events rely on social investigation, which involves considerable human effort. Recently, by analyzing messages in social networks, researchers can also detect and evaluate country-scale events. Nevertheless, the analysis of city-scale events has not been explored. In this article, we use human flow dynamics, which reflect the social activeness of a region, to detect social events and measure their impacts. We first extract human flow dynamics from taxi traces. Second, we propose a method that can not only discover the happening time and venue of events from abnormal social activeness, but also measure the scale of events through changes in such activeness. Third, we extract traffic congestion information from traces and use its change during social events to measure their impact. The results of experiments validate the effectiveness of both the event detection and impact measurement methods.
Funder
Fundamental Research Funds for the Central Universities
Program for New Century Excellent Talents in University
National Key Basic Research Program of China
International Network Programme of The Danish Agency for Science, Technology and Innovation
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献