A Review of In-Memory Computing Architectures for Machine Learning Applications

Author:

Bavikadi Sathwika1,Sutradhar Purab Ranjan2,Khasawneh Khaled N.1,Ganguly Amlan2,Pudukotai Dinakarrao Sai Manoj1

Affiliation:

1. George Mason University, Fairfax, VA, USA

2. Rochester Institute of Technology, Rochester, NY, USA

Publisher

ACM

Reference33 articles.

1. M Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. ArXiv (2016). M Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. ArXiv (2016).

2. A Mustafa etal 2020 a. IMAC: In-Memory Multi-Bit Multiplication and ACcumulation in 6T SRAM Array. IEEE Transactions on Circuits and Systems I: Regular Papers (2020). A Mustafa et al. 2020 a. IMAC: In-Memory Multi-Bit Multiplication and ACcumulation in 6T SRAM Array. IEEE Transactions on Circuits and Systems I: Regular Papers (2020).

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ReApprox-PIM: Reconfigurable Approximate Lookup-Table (LUT)-Based Processing-in-Memory (PIM) Machine Learning Accelerator;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-08

2. In-memory computing: characteristics, spintronics, and neural network applications insights;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-07-09

3. CIM²PQ: An Arraywise and Hardware-Friendly Mixed Precision Quantization Method for Analog Computing-In-Memory;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-07

4. Energy Harvesting-assisted Ultra-Low-Power Processing-in-Memory Accelerator for ML Applications;Proceedings of the Great Lakes Symposium on VLSI 2024;2024-06-12

5. An In-Memory Power Efficient Computing Architecture with Emerging VGSOT MRAM Device;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3