GHOST: A Graph Neural Network Accelerator using Silicon Photonics

Author:

Afifi Salma1ORCID,Sunny Febin1ORCID,Shafiee Amin1ORCID,Nikdast Mahdi1ORCID,Pasricha Sudeep1ORCID

Affiliation:

1. Colorado State University

Abstract

Graph neural networks (GNNs) have emerged as a powerful approach for modelling and learning from graph-structured data. Multiple fields have since benefitted enormously from the capabilities of GNNs, such as recommendation systems, social network analysis, drug discovery, and robotics. However, accelerating and efficiently processing GNNs require a unique approach that goes beyond conventional artificial neural network accelerators, due to the substantial computational and memory requirements of GNNs. The slowdown of scaling in CMOS platforms also motivates a search for alternative implementation substrates. In this paper, we present GHOST , the first silicon-photonic hardware accelerator for GNNs. GHOST efficiently alleviates the costs associated with both vertex-centric and edge-centric operations. It implements separately the three main stages involved in running GNNs in the optical domain, allowing it to be used for the inference of various widely used GNN models and architectures, such as graph convolution networks and graph attention networks. Our simulation studies indicate that GHOST exhibits at least 10.2 × better throughput and 3.8 × better energy efficiency when compared to GPU, TPU, CPU and multiple state-of-the-art GNN hardware accelerators.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empowering Image Sensors with Integrated Photonic Neural Networks;2024 IEEE Photonics Society Summer Topicals Meeting Series (SUM);2024-07-15

2. Silicon Photonic 2.5D Interposer Networks for Overcoming Communication Bottlenecks in Scale-out Machine Learning Hardware Accelerators;2024 IEEE 42nd VLSI Test Symposium (VTS);2024-04-22

3. Accelerating Neural Networks for Large Language Models and Graph Processing with Silicon Photonics;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3