Machine Learning Assisted Circuit Sizing Approach for Low-Voltage Analog Circuits with Efficient Variation-Aware Optimization

Author:

Song Ling-Yen1ORCID,Chou Chih-Yun1ORCID,Kuo Tung-Chieh1ORCID,Liu Chien-Nan1ORCID,Huang Juinn-Dar1ORCID

Affiliation:

1. Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan, R.O.C.

Abstract

Low-power analog design is a hot topic for various power efficient applications. Sizing low-power analog circuits is not easy because the increasing uncertainties from low-voltage techniques magnify process variation effects on the design yield. Simulation-based approaches are often adopted for analog circuit sizing because of its high accuracy and adaptability in different cases. However, if process variation is also considered, the huge number of simulations becomes almost infeasible for large circuits. Although there are some recent works that adopt machine learning (ML) techniques to speed up the optimization process, the process variation effects are still hard to be considered in those approaches. Using the popular evolutionary algorithm (EA) as an example, this paper proposes an ML-assisted prediction model to speed up the variation-aware circuit sizing technique for low-voltage analog circuits. By predicting the likelihood for a design that has worse performance, the enhanced EA process is able to skip many unnecessary simulations to reduce the convergence time. Moreover, a novel force-directed model is proposed to guide the optimization toward better yield. Based on the performance of prior circuit samples in the EA optimization, the proposed force model is able to predict the likelihood of a design that has better yield without time-consuming Monte Carlo simulations. Compared with prior works, the proposed approach significantly reduces the number of simulations in the yield-aware EA optimization, which helps to generate practical low-voltage designs with high reliability and low cost.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Power Application Design of Adaptive Circuits Based on Deep Learning Algorithm;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3