Experiments with some algorithms that find central solutions for pattern classification

Author:

Slagle James1

Affiliation:

1. Naval Research Lab., Washington, DC

Abstract

In two-class pattern recognition, it is a standard technique to have an algorithm finding hyperplanes which separates the two classes in a linearly separable training set. The traditional methods find a hyperplane which separates all points in one class from all points in the other, but such a hyperplane is not necessarily centered in the empty space between the two classes. Since a central hyperplane does not favor one class or the other, it should have a lower error rate in classifying new points and is therefore better than a noncentral hyperplane. Six algorithms for finding central hyperplanes are tested on three data sets. Although frequently used in practice, the modified relaxation algorithm is very poor. Three algorithms which are defined in the paper are found to be quite good.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference8 articles.

1. The accelerated relaxation method for linear inequalities;Chang C.L;IEEE Trans. Computers C-20,1971

2. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

3. Effects of Adaptation Parameters on Convergence Time and Tolerance for Adaptive Threshold Elements

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3