Santa claus meets hypergraph matchings

Author:

Asadpour Arash1,Feige Uriel2,Saberi Amin3

Affiliation:

1. New York University, New York, NY

2. The Weizmann Institute, Israel

3. Stanford University, CA

Abstract

We consider the restricted assignment version of the problem of max-min fair allocation of indivisible goods, also known as the Santa Claus problem . There are m items and n players. Every item has some nonnegative value, and every player is interested in only some of the items. The goal is to distribute the items to the players in a way that maximizes the minimum of the sum of the values of the items given to any player. It was previously shown via a nonconstructive proof that uses the Lovász local lemma that the integrality gap of a certain configuration LP for the problem is no worse than some (unspecified) constant. This gives a polynomial-time algorithm to estimate the optimum value of the problem within a constant factor, but does not provide a polynomial-time algorithm for finding a corresponding allocation. We use a different approach to analyze the integrality gap. Our approach is based upon local search techniques for finding perfect matchings in certain classes of hypergraphs. As a result, we prove that the integrality gap of the configuration LP is no worse than 1/4. Our proof provides a local search algorithm which finds the corresponding allocation, but is nonconstructive in the sense that this algorithm is not known to converge to a local optimum in a polynomial number of steps.

Funder

Israel Science Foundation

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Better Trees for Santa Claus;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

2. Polynomial-time Combinatorial Algorithm for General Max–Min Fair Allocation;Algorithmica;2023-02-27

3. Maximin Fair Allocation of Indivisible Items Under Cost Utilities;Algorithmic Game Theory;2023

4. Perfect matching in bipartite hypergraphs subject to a demand graph;Annals of Operations Research;2022-11-28

5. Restricted Max-Min Allocation: Integrality Gap and Approximation Algorithm;Algorithmica;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3