Malware Triage for Early Identification of Advanced Persistent Threat Activities

Author:

Laurenza Giuseppe1ORCID,Lazzeretti Riccardo1,Mazzotti Luca1

Affiliation:

1. Sapienza University of Rome, Via Ariosto, Rome, Italy

Abstract

In the past decade, a new class of cyber-threats, known as “Advanced Persistent Threat” (APT), has emerged and has been used by different organizations to perform dangerous and effective attacks against financial and politic entities, critical infrastructures, and so on. To identify APT related malware early, a semi-automatic approach for malware samples analysis is needed. Recently, a malware triage step for a semi-automatic malware analysis architecture has been introduced. This step identifies incoming APT samples early, among all the malware delivered per day in the cyber-space, to immediately dispatch them to deeper analysis. In the article, the authors have built the knowledge base on known APTs obtained from publicly available reports. For efficiency reasons, they rely on static malware features, extracted with negligible delay, and use machine learning techniques for the identification. Unfortunately, the proposed solution has the disadvantage of requiring a long training time and needs to be completely retrained each time new APT samples or even a new APT class are discovered. In this article, we move from multi-class classification to a group of one-class classifiers, which significantly decreases runtime and allows higher modularity, while still guaranteeing precision and accuracy over 90%.

Funder

La Sapienza University of Rome Bando Ricerca 2017

Consorzio Interuniversitario Nazionale Informatica (CINI) National Laboratory of Cyber Security

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference26 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3