GRace

Author:

Zheng Mai1,Ravi Vignesh T.1,Qin Feng1,Agrawal Gagan1

Affiliation:

1. The Ohio State University, Columbus, OH, USA

Abstract

In recent years, GPUs have emerged as an extremely cost-effective means for achieving high performance. Many application developers, including those with no prior parallel programming experience, are now trying to scale their applications using GPUs. While languages like CUDA and OpenCL have eased GPU programming for non-graphical applications, they are still explicitly parallel languages. All parallel programmers, particularly the novices, need tools that can help ensuring the correctness of their programs. Like any multithreaded environment, data races on GPUs can severely affect the program reliability. Thus, tool support for detecting race conditions can significantly benefit GPU application developers. Existing approaches for detecting data races on CPUs or GPUs have one or more of the following limitations: 1) being illsuited for handling non-lock synchronization primitives on GPUs; 2) lacking of scalability due to the state explosion problem; 3) reporting many false positives because of simplified modeling; and/or 4) incurring prohibitive runtime and space overhead. In this paper, we propose GRace, a new mechanism for detecting races in GPU programs that combines static analysis with a carefully designed dynamic checker for logging and analyzing information at runtime. Our design utilizes GPUs memory hierarchy to log runtime data accesses efficiently. To improve the performance, GRace leverages static analysis to reduce the number of statements that need to be instrumented. Additionally, by exploiting the knowledge of thread scheduling and the execution model in the underlying GPUs, GRace can accurately detect data races with no false positives reported. Based on the above idea, we have built a prototype of GRace with two schemes, i.e., GRace-stmt and GRace-addr, for NVIDIA GPUs. Both schemes are integrated with the same static analysis. We have evaluated GRace-stmt and GRace-addr with three data race bugs in three GPU kernel functions and also have compared them with the existing approach, referred to as B-tool. Our experimental results show that both schemes of GRace are effective in detecting all evaluated cases with no false positives, whereas Btool reports many false positives for one evaluated case. On the one hand, GRace-addr incurs low runtime overhead, i.e., 22-116%, and low space overhead, i.e., 9-18MB, for the evaluated kernels. On the other hand, GRace-stmt offers more help in diagnosing data races with larger overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference46 articles.

1. CUDA Community Showcase. http://www.nvidia.com/object/cuda_apps_flash_new.html. CUDA Community Showcase. http://www.nvidia.com/object/cuda_apps_flash_new.html.

2. ATI Stream Technology. http://www.amd.com/stream. ATI Stream Technology. http://www.amd.com/stream.

3. Scalable temporal order analysis for large scale debugging

4. Stack Trace Analysis for Large Scale Debugging

5. Extending a traditional debugger to debug massively parallel applications

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PROV-IO: A Cross-Platform Provenance Framework for Scientific Data on HPC Systems;IEEE Transactions on Parallel and Distributed Systems;2024-05

2. Structural testing for CUDA programming model;Concurrency and Computation: Practice and Experience;2024-04-09

3. Modeling and Analyzing Evaluation Cost of CUDA Kernels;ACM Transactions on Parallel Computing;2024-03-12

4. MIMD Programs Execution Support on SIMD Machines: A Holistic Survey;IEEE Access;2024

5. An Architecture for a Tri-Programming Model-Based Parallel Hybrid Testing Tool;Applied Sciences;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3