SpiceC

Author:

Feng Min1,Gupta Rajiv1,Hu Yi1

Affiliation:

1. University of California, Riverside, Riverside, CA, USA

Abstract

In this paper we present an approach to parallel programming called SpiceC. SpiceC simplifies the task of parallel programming through a combination of an intuitive computation model and SpiceC directives. The SpiceC parallel computation model consists of multiple threads where every thread has a private space for data and all threads share data via a shared space. Each thread performs computations using its private space thus offering isolation which allows for speculative computations. SpiceC provides easy to use SpiceC compiler directives using which the programmers can express different forms of parallelism. It allows developers to express high level constraints on data transfers between spaces while the tedious task of generating the code for the data transfers is performed by the compiler. SpiceC also supports data transfers involving dynamic data structures without help from developers. SpiceC allows developers to create clusters of data to enable parallel data transfers. SpiceC programs are portable across modern chip multiprocessor based machines that may or may not support cache coherence. We have developed implementations of SpiceC for shared memory systems with and without cache coherence. We evaluate our implementation using seven benchmarks of which four are parallelized speculatively. Our compiler generated implementations achieve speedups ranging from 2x to 18x on a 24 core system.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Software-Hardware Co-designed Methodology for Efficient Thread Level Speculation;2017 IEEE International Conference on Computer and Information Technology (CIT);2017-08

2. Software Speculation on Caching DSMs;International Journal of Parallel Programming;2017-04-04

3. A Survey on Thread-Level Speculation Techniques;ACM Computing Surveys;2016-11-11

4. EXCITE-VM;Proceedings of the 2016 International Conference on Parallel Architectures and Compilation;2016-09-11

5. Parallelizing Back Propagation Neural Network on Speculative Multicores;INT C PAR DISTRIB SY;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3