Robust Decentralized Low-Rank Matrix Decomposition

Author:

Hegedűs István1,Berta Árpád1,Kocsis Levente2,Benczúr András A.2,Jelasity Márk3

Affiliation:

1. University of Szeged, Hungary

2. Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)

3. University of Szeged, and MTA-SZTE Research Group on AI, Hungary

Abstract

Low-rank matrix approximation is an important tool in data mining with a wide range of applications, including recommender systems, clustering, and identifying topics in documents. When the matrix to be approximated originates from a large distributed system, such as a network of mobile phones or smart meters, a challenging problem arises due to the strongly conflicting yet essential requirements of efficiency, robustness, and privacy preservation. We argue that although collecting sensitive data in a centralized fashion may be efficient, it is not an option when considering privacy and efficiency at the same time. Thus, we do not allow any sensitive data to leave the nodes of the network. The local information at each node (personal attributes, documents, media ratings, etc.) defines one row in the matrix. This means that all computations have to be performed at the edge of the network. Known parallel methods that respect the locality constraint, such as synchronized parallel gradient search or distributed iterative methods, require synchronized rounds or have inherent issues with load balancing, and thus they are not robust to failure. Our distributed stochastic gradient descent algorithm overcomes these limitations. During the execution, any sensitive information remains local, whereas the global features (e.g., the factor model of movies) converge to the correct value at all nodes. We present a theoretical derivation and a thorough experimental evaluation of our algorithm. We demonstrate that the convergence speed of our method is competitive while not relying on synchronization and being robust to extreme and realistic failure scenarios. To demonstrate the feasibility of our approach, we present trace-based simulations, real smartphone user behavior analysis, and tests over real movie recommender system data.

Funder

“Momentum—Big Data” grant of the Hungarian Academy of Sciences

OTKA NK

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing the power of machine learning for crop improvement and sustainable production;Frontiers in Plant Science;2024-08-12

2. Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey;ACM Computing Surveys;2024-06-22

3. Enhanced Privacy Preservation for Recommender Systems;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

4. When Robotics Meets Distributed Learning: the Federated Learning Robotic Network Framework;2023 IEEE Symposium on Computers and Communications (ISCC);2023-07-09

5. Cross-platform sequential recommendation with sharing item-level relevance data;Information Sciences;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3