Learning a Generalized Physical Face Model From Data

Author:

Yang Lingchen1ORCID,Zoss Gaspard2ORCID,Chandran Prashanth2ORCID,Gross Markus12ORCID,Solenthaler Barbara1ORCID,Sifakis Eftychios3ORCID,Bradley Derek2ORCID

Affiliation:

1. ETH Zürich, Zurich, Switzerland

2. The Walt Disney Company (Switzerland) GmbH, Zurich, Switzerland

3. University of Wisconsin Madison, Madison, United States of America

Abstract

Physically-based simulation is a powerful approach for 3D facial animation as the resulting deformations are governed by physical constraints, allowing to easily resolve self-collisions, respond to external forces and perform realistic anatomy edits. Today's methods are data-driven, where the actuations for finite elements are inferred from captured skin geometry. Unfortunately, these approaches have not been widely adopted due to the complexity of initializing the material space and learning the deformation model for each character separately, which often requires a skilled artist followed by lengthy network training. In this work, we aim to make physics-based facial animation more accessible by proposing a generalized physical face model that we learn from a large 3D face dataset. Once trained, our model can be quickly fit to any unseen identity and produce a ready-to-animate physical face model automatically. Fitting is as easy as providing a single 3D face scan, or even a single face image. After fitting, we offer intuitive animation controls, as well as the ability to retarget animations across characters. All the while, the resulting animations allow for physical effects like collision avoidance, gravity, paralysis, bone reshaping and more.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Michael Bao, Matthew Cong, Stéphane Grabli, and Ronald Fedkiw. 2018. High-Quality Face Capture Using Anatomical Muscles. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (12 2018). http://arxiv.org/abs/1812.02836

2. A morphable model for the synthesis of 3D faces;Blanz Volker;Siggraph,1999

3. Projective dynamics

4. REALY: Rethinking the Evaluation of 3D Face Reconstruction

5. Semantic Deep Face Models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3