Seneca: Taint-Based Call Graph Construction for Java Object Deserialization

Author:

Santos Joanna C. S.1ORCID,Mirakhorli Mehdi2ORCID,Shokri Ali3ORCID

Affiliation:

1. University of Notre Dame, Notre Dame, USA

2. University of Hawaii, Manoa, USA

3. Virginia Tech, Blacksburg, USA

Abstract

Object serialization and deserialization are widely used for storing and preserving objects in files, memory, or database as well as for transporting them across machines, enabling remote interaction among processes and many more. This mechanism relies on reflection, a dynamic language that introduces serious challenges for static analyses. Current state-of-the-art call graph construction algorithms do not fully support object serialization/deserialization, i.e., they are unable to uncover the callback methods that are invoked when objects are serialized and deserialized. Since call graphs are a core data structure for multiple types of analysis (e.g., vulnerability detection), an appropriate analysis cannot be performed since the call graph does not capture hidden (vulnerable) paths that occur via callback methods. In this paper, we present Seneca, an approach for handling serialization with improved soundness in the context of call graph construction. Our approach relies on taint analysis and API modeling to construct sound call graphs. We evaluated our approach with respect to soundness, precision, performance, and usefulness in detecting untrusted object deserialization vulnerabilities. Our results show that Seneca can create sound call graphs with respect to serialization features. The resulting call graphs do not incur significant runtime overhead and were shown to be useful for performing identification of vulnerable paths caused by untrusted object deserialization.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference73 articles.

1. 2023. TensorFlow. https://www.tensorflow. org [Online; accessed 21. Oct. 2023 ].

2. Karim Ali and Ondřej Lhoták. 2012. Application-only call graph construction. In European Conference on Object-Oriented Programming. Springer, 688-712.

3. Static analysis of Java enterprise applications: frameworks and caches, the elephants in the room;Antoniadis Anastasios;PLDI.,2020

4. Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom) (PLDI '14). ACM, New York, NY, USA, 259-269. https: //doi.org/10.1145/2594291.2594299 10.1145/2594291.2594299

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterizing and Detecting Program Representation Faults of Static Analysis Frameworks;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3