A Simple but Quantifiable Approach to Dynamic Price Prediction in Ride-on-demand Services Leveraging Multi-source Urban Data

Author:

Guo Suiming1,Chen Chao2,Wang Jingyuan3,Liu Yaxiao4,Xu Ke4,Zhang Daqing5,Chiu Dah Ming6

Affiliation:

1. College of Information Science and Technology, Jinan University, Guangzhou, China

2. Chongqing University, Chongqing, China

3. Beihang University, Beijing, China

4. Tsinghua University, Beijing, China

5. Peking University, Beijing, China

6. The Chinese University of Hong Kong, Hong Kong, China

Abstract

Ride-on-demand (RoD) services such as Uber and Didi are becoming increasingly popular, and in these services dynamic prices play an important role in balancing the supply and demand to benefit both drivers and passengers. However, dynamic prices also create concerns. For passengers, the "unpredictable" prices sometimes prevent them from making quick decisions: one may wonder if it is possible to get a lower price if s/he chooses to wait a while. It is necessary to provide more information to them, and predicting the dynamic prices is a possible solution. For the transportation industry and policy makers, there are also concerns about the relationship between RoD services and their more traditional counterparts such as metro, bus, and taxi: whether they affect each other and how. In this paper we tackle these two concerns by predicting the dynamic prices using multi-source urban data. Price prediction could help passengers understand whether they could get a lower price in neighboring locations or within a short time, thus alleviating their concerns. The prediction is based on urban data from multiple sources, including the RoD service itself, taxi service, public transportation, weather, the map of a city, etc. We train a simple linear regression model with high-dimensional composite features to perform the prediction. By combining simple basic features into composite features, we compensate for the loss of expressiveness in a linear model due to the lack of non-linearity. Additionally, the use of multi-source data and a linear model enables us to quantify and explain the relationship between multiple means of transportation by examining the weights of different features in the model. Our hope is that the study not only serves as an accurate prediction to make passengers more satisfied, but also sheds light on the concern about the relationship between different means of transportation for either the industry or policy makers.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference52 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3