Low-Power High-Efficiency Video Decoding using General-Purpose Processors

Author:

Chi Chi Ching1,Alvarez-Mesa Mauricio1,Juurlink Ben1

Affiliation:

1. Technische Universität Berlin, Germany

Abstract

In this article, we investigate how code optimization techniques and low-power states of general-purpose processors improve the power efficiency of HEVC decoding. The power and performance efficiency of the use of SIMD instructions, multicore architectures, and low-power active and idle states are analyzed in detail for offline video decoding. In addition, the power efficiency of techniques such as “race to idle” and “exploiting slack” with DVFS are evaluated for real-time video decoding. Results show that “exploiting slack” is more power efficient than “race to idle” for all evaluated platforms representing smartphone, tablet, laptop, and desktop computing systems.

Funder

European Community's Seventh Framework Programme [FP7/2007-2013] under the LPGPU Project (www.lpgpu.org)

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance-Based Pricing in Multi-Core Geo-Distributed Cloud Computing;IEEE Transactions on Cloud Computing;2020-10-01

2. Software HEVC video decoder: towards an energy saving for mobile applications;Multimedia Tools and Applications;2020-06-03

3. Joint DVFS and Parallelism for Energy Efficient and Low Latency Software Video Decoding;IEEE Transactions on Parallel and Distributed Systems;2018-04-01

4. Highly parallel HEVC decoding for heterogeneous systems with CPU and GPU;Signal Processing: Image Communication;2018-03

5. Cooperative DVFS for energy-efficient HEVC decoding on embedded CPU-GPU architecture;Proceedings of the 54th Annual Design Automation Conference 2017;2017-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3