Active multiple kernel learning for interactive 3D object retrieval systems

Author:

Hoi Steven C. H.1,Jin Rong2

Affiliation:

1. Nanyang Technological University, Singapore

2. Michigan State University

Abstract

An effective relevance feedback solution plays a key role in interactive intelligent 3D object retrieval systems. In this work, we investigate the relevance feedback problem for interactive intelligent 3D object retrieval, with the focus on studying effective machine learning algorithms for improving the user's interaction in the retrieval task. One of the key challenges is to learn appropriate kernel similarity measure between 3D objects through the relevance feedback interaction with users. We address this challenge by presenting a novel framework of Active multiple kernel learning (AMKL), which exploits multiple kernel learning techniques for relevance feedback in interactive 3D object retrieval. The proposed framework aims to efficiently identify an optimal combination of multiple kernels by asking the users to label the most informative 3D images. We evaluate the proposed techniques on a dataset of over 10,000 3D models collected from the World Wide Web. Our experimental results show that the proposed AMKL technique is significantly more effective for 3D object retrieval than the regular relevance feedback techniques widely used in interactive content-based image retrieval, and thus is promising for enhancing user's interaction in such interactive intelligent retrieval systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating Distribution Matching into Uncertainty for Multiple Kernel Active Learning;IEEE Transactions on Knowledge and Data Engineering;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3