Multimodal Multiplatform Social Media Event Summarization

Author:

Tiwari Akanksha1,Weth Christian Von Der1,Kankanhalli Mohan S.1

Affiliation:

1. National University Singapore, Singapore

Abstract

Social media platforms are turning into important news sources since they provide real-time information from different perspectives. However, high volume, dynamism, noise, and redundancy exhibited by social media data make it difficult to comprehend the entire content. Recent works emphasize on summarizing the content of either a single social media platform or of a single modality (either textual or visual). However, each platform has its own unique characteristics and user base, which brings to light different aspects of real-world events. This makes it critical as well as challenging to combine textual and visual data from different platforms. In this article, we propose summarization of real-world events with data stemming from different platforms and multiple modalities. We present the use of a Markov Random Fields based similarity measure to link content across multiple platforms. This measure also enables the linking of content across time, which is useful for tracking the evolution of long-running events. For the final content selection, summarization is modeled as a subset selection problem. To handle the complexity of the optimal subset selection, we propose the use of submodular objectives. Facets such as coverage, novelty, and significance are modeled as submodular objectives in a multimodal social media setting. We conduct a series of quantitative and qualitative experiments to illustrate the effectiveness of our approach compared to alternative methods.

Funder

National Research Foundation, Prime Minister's Office, Singapore

Interactive and Digital Media Programme Office

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Trade-Off within Visual Information for MultiModal Sentence Summarization;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Love-Hate Dataset: A Multi-Modal Multi-Platform Dataset Depicting Emotions in the 2023 Israel-Hamas War;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

3. A Survey on Multi-modal Summarization;ACM Computing Surveys;2023-07-13

4. Social Media Driven Big Data Analysis for Disaster Situation Awareness: A Tutorial;IEEE Transactions on Big Data;2023-02-01

5. Multimodal Learning for Automatic Summarization: A Survey;Advanced Data Mining and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3