Determining Exact Quantiles with Randomized Summaries

Author:

Chen Ziling1ORCID,Guan Haoquan1ORCID,Song Shaoxu1ORCID,Huang Xiangdong1ORCID,Wang Chen1ORCID,Wang Jianmin1ORCID

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

Quantiles are fundamental statistics in various data science tasks, but costly to compute, e.g., by loading the entire data in memory for ranking. With limited memory space, prevalent in end devices or databases with heavy loads, it needs to scan the data in multiple passes. The idea is to gradually shrink the range of the queried quantile till it is small enough to fit in memory for ranking the result. Existing methods use deterministic sketches to determine the exact range of quantile, known as deterministic filter, which could be inefficient in range shrinking. In this study, we propose to shrink the ranges more aggressively, using randomized summaries such as KLL sketch. That is, with a high probability the quantile lies in a smaller range, namely probabilistic filter, determined by the randomized sketch. Specifically, we estimate the expected passes for determining the exact quantiles with probabilistic filters, and select a proper probability that can minimize the expected passes. Analyses show that our exact quantile determination method can terminate in P passes with 1-δ confidence, storing O(N 1/P logP-1/2P (1/δ)) items, close to the lower bound Ømega(N1/P) for a fixed δ. The approach has been deployed as a function in an LSM-tree based time-series database Apache IoTDB. Remarkably, the randomized sketches can be pre-computed for the immutable SSTables in LSM-tree. Moreover, multiple quantile queries could share the data passes for probabilistic filters in range estimation. Extensive experiments on real and synthetic datasets demonstrate the superiority of our proposal compared to the existing methods with deterministic filters. On average, our method takes 0.48 fewer passes and 18% of the time compared with the state-of-the-art deterministic sketch (GK sketch).

Funder

the National Natural Science Foundation of China

Beijing Key Laboratory of Industrial Big Data System and Application

the National Key Research and Development Plan

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3