A Cocktail Approach to Practical Call Graph Construction

Author:

Cai Yuandao1ORCID,Zhang Charles1ORCID

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong, China

Abstract

After decades of research, constructing call graphs for modern C-based software remains either imprecise or inefficient when scaling up to the ever-growing complexity. The main culprit is the difficulty of resolving function pointers, as precise pointer analyses are cubic in nature and become exponential when considering calling contexts. This paper takes a practical stance by first conducting a comprehensive empirical study of function pointer manipulations in the wild. By investigating 5355 indirect calls in five popular open-source systems, we conclude that, instead of the past uniform treatments for function pointers, a cocktail approach can be more effective in “squeezing” the number of difficult pointers to a minimum using a potpourri of cheap methods. In particular, we decompose the costs of constructing highly precise call graphs of big code by tailoring several increasingly precise algorithms and synergizing them into a concerted workflow. As a result, many indirect calls can be precisely resolved in an efficient and principled fashion, thereby reducing the final, expensive refinements. This is, in spirit, similar to the well-known cocktail medical therapy. The results are encouraging — our implemented prototype called Coral can achieve similar precision versus the previous field-, flow-, and context-sensitive Andersen-style call graph construction, yet scale up to millions of lines of code for the first time, to the best of our knowledge. Moreover, by evaluating the produced call graphs through the lens of downstream clients (i.e., use-after-free detection, thin slicing, and directed grey-box fuzzing), the results show that Coral can dramatically improve their effectiveness for better vulnerability hunting, understanding, and reproduction. More excitingly, we found twelve confirmed bugs (six impacted by indirect calls) in popular systems (e.g., MariaDB), spreading across multiple historical versions.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference114 articles.

1. Inc. 2020 Synopsys. [n. d.]. The Heartbleed Bug. https://heartbleed.com/ Inc. 2020 Synopsys. [n. d.]. The Heartbleed Bug. https://heartbleed.com/

2. A Study of Call Graph Construction for JVM-Hosted Languages

3. Application-Only Call Graph Construction

4. Constructing Call Graphs of Scala Programs

5. Type-Based Call Graph Construction Algorithms for Scala

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3