On Incremental High Utility Sequential Pattern Mining

Author:

Wang Jun-Zhe1,Huang Jiun-Long1ORCID

Affiliation:

1. Department of Computer Science, College of Computer Science, National Chiao Tung University, Hsinchu City, Taiwan

Abstract

High utility sequential pattern (HUSP) mining is an emerging topic in pattern mining, and only a few algorithms have been proposed to address it. In practice, most sequence databases usually grow over time, and it is inefficient for existing algorithms to mine HUSPs from scratch when databases grow with a small portion of updates. In view of this, we propose the IncUSP-Miner + algorithm to mine HUSPs incrementally. Specifically, to avoid redundant re-computations, we propose a tighter upper bound of the utility of a sequence, called Tight Sequence Utility (TSU), and then we design a novel data structure, called the candidate pattern tree, to buffer the sequences whose TSU values are greater than or equal to the minimum utility threshold in the original database. Accordingly, to avoid keeping a huge amount of utility information for each sequence, a set of concise utility information is designed to be stored in each tree node. To improve the mining efficiency, several strategies are proposed to reduce the amount of computation for utility update and the scopes of database scans. Moreover, several strategies are also proposed to properly adjust the candidate pattern tree for the support of multiple database updates. Experimental results on some real and synthetic datasets show that IncUSP-Miner + is able to efficiently mine HUSPs incrementally.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mining frequent temporal duration-based patterns on time interval sequential database;Information Sciences;2024-04

2. A survey of high utility sequential patterns mining methods;Journal of Intelligent & Fuzzy Systems;2023-11-04

3. Incremental Targeted Mining in Sequences;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

4. HUSP-SP: Faster Utility Mining on Sequence Data;ACM Transactions on Knowledge Discovery from Data;2023-08-10

5. Performance Evaluation of Vedic Multiplier Using Hybrid Improvised High Utility Item Set Mining Using Fuzzy;2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3