WCET-Aware Dynamic I-Cache Locking for a Single Task

Author:

Zheng Wenguang1,Wu Hui2,Yang Qing3

Affiliation:

1. Tianjin University of Technology, Tianjing, China

2. The University of New South Wales, Sydney, Australia

3. The University of Rhode Island, Kingston, USA

Abstract

Caches are widely used in embedded systems to bridge the increasing speed gap between processors and off-chip memory. However, caches make it significantly harder to compute the worst-case execution time (WCET) of a task. To alleviate this problem, cache locking has been proposed. We investigate the WCET-aware I-cache locking problem and propose a novel dynamic I-cache locking heuristic approach for reducing the WCET of a task. For a nonnested loop, our approach aims at selecting a minimum set of memory blocks of the loop as locked cache contents by using the min-cut algorithm. For a loop nest, our approach not only aims at selecting a minimum set of memory blocks of the loop nest as locked cache contents but also finds a good loading point for each selected memory block. We propose two algorithms for finding a good loading point for each selected memory block, a polynomial-time heuristic algorithm and an integer linear programming (ILP)-based algorithm, further reducing the WCET of each loop nest. We have implemented our approach and compared it to two state-of-the-art I-cache locking approaches by using a set of benchmarks from the MRTC benchmark suite. The experimental results show that the polynomial-time heuristic algorithm for finding a good loading point for each selected memory block performs almost equally as well as the ILP-based algorithm. Compared to the partial locking approach proposed in Ding et al. [2012], our approach using the heuristic algorithm achieves the average improvements of 33%, 15%, 9%, 3%, 8%, and 11% for the 256B, 512B, 1KB, 4KB, 8KB, and 16KB caches, respectively. Compared to the dynamic locking approach proposed in Puaut [2006], it achieves the average improvements of 9%, 19%, 18%, 5%, 11%, and 16% for the 256B, 512B, 1KB, 4KB, 8KB, and 16KB caches, respectively.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3