Affiliation:
1. Georgia Institute of Technology, Atlanta, GA
2. Northwestern University
Abstract
We present procedures for selecting the best or near-best of a finite number of simulated systems when best is defined by maximum or minimum expected performance. The procedures are appropriate when it is possible to repeatedly obtain small, incremental samples from each simulated system. The goal of such a sequential procedure is to eliminate, at an early stage of experimentation, those simulated systems that are apparently inferior, and thereby reduce the overall computational effort required to find the best. The procedures we present accommodate unequal variances across systems and the use of common random numbers. However, they are based on the assumption of normally distributed data, so we analyze the impact of batching (to achieve approximate normality or independence) on the performance of the procedures. Comparisons with some existing indifference-zone procedures are also provided.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献