ASHRAY: Enhancing Water-usage Comfort in Developing Regions using Data-driven IoT Retrofits

Author:

Abbas Samar1,Ehsan Ahmed1,Ahmed Saad1,Khan Sheraz Ali2,Jadoon Tariq M.3,Alizai Muhammad Hamad1ORCID

Affiliation:

1. Department of Computer Science, LUMS University, Lahore, Pakistan

2. Department of Mechatronics Engg., UET Peshawar, Peshawar, Pakistan

3. Department of Electrical Engineering, LUMS University, Lahore, Pakistan

Abstract

In developing countries, majority of the households use overhead water tanks to have running water. These water tanks are exposed to the elements, which usually render the tap water uncomfortable to use, given the extreme subtropical weather conditions. Externally weatherproofing these tanks to maintain the groundwater temperature is short-lived, and only results in a marginal (0.5°C–1°C) improvement in tap water temperature. We propose Ashray , an IoT-inspired, intelligent system to minimize the exposure of water to the elements thereby maintaining its temperature close to that of the groundwater. Ashray learns the water demand patterns of a household and pumps water into the overhead tank only when necessary. The predictive, machine learning based, approach of Ashray improves water comfort by up to 8°C in summers and 3°C in winters, on average. Ashray is retrofitted into existing infrastructure with a hardware prototyping cost of $27, whereas it can save up to 16% on water heating costs, through reduction in natural gas consumption, by leveraging groundwater temperature. Moreover, we also consider a transiently-powered Ashray ,  which uses the energy harvested from the ambient environment, and propose an intermittent data pipeline to improve its prediction accuracy. The transiently-powered Ashray is suitable for long-term deployment, requires minimal maintenance and delivers approximately the same performance. Ashray has the potential to improve the thermal comfort and reduce energy costs for millions of households in developing countries.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3