Affiliation:
1. Tampere University, Tampere, Finland
2. Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC/Universidad de Sevilla, Seville, Spain
Abstract
The design of near future cryptocircuits will require greater performance characteristics in order to be implemented in devices with very limited resources for secure applications. Considering the security against differential power side-channel attacks (DPA), explorations of different implementations of dual-precharge logic gates with advanced and emerging technologies, using nanometric FinFET and Tunnel FET transistors, are proposed aiming to maintain or even improve the security levels obtained by current Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) technologies and reducing the resources needed for the implementations. As case study, dual-precharge logic primitives have been designed and included in the 4-bit substitution box of PRIDE algorithm, measuring the performance and evaluating the security through simulation-based Differential Power Analysis (DPA) attacks for each implementation. Extensive electrical simulations with predictive Predictive Transistor model on scaled 16nm and 22nm MOSFET, 16nm and 20nm FinFET, and 20nm Tunnel Field Effect Transistor (TFET) demonstrate a clear evolution of security and performances with respect to current 90nm MOSFET implementations, providing FinFET as fastest solutions with a delay 3.7 times better than conventional proposals, but TFET being the best candidate for future cryptocircuits in terms of average power consumption (x0.02 times compared with conventional technologies) and security in some orders of magnitude.
Funder
European Regional Development Fund - FEDER
Spanish Government
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献