Characterizing memory requirements for queries over continuous data streams

Author:

Arasu Arvind1,Babcock Brian1,Babu Shivnath1,McAlister Jon1,Widom Jennifer1

Affiliation:

1. Stanford University, Stanford, California

Abstract

This article deals with continuous conjunctive queries with arithmetic comparisons and optional aggregation over multiple data streams. An algorithm is presented for determining whether or not any given query can be evaluated using a bounded amount of memory for all possible instances of the data streams. For queries that can be evaluated using bounded memory, an execution strategy based on constant-sized synopses of the data streams is proposed. For queries that cannot be evaluated using bounded memory, data stream scenarios are identified in which evaluating the queries requires memory linear in the size of the unbounded streams.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference32 articles.

1. The Space Complexity of Approximating the Frequency Moments

2. Characterizing memory requirements for queries over continuous data streams

3. Arasu A. Babu S. and Widom J. 2002b. An abstract semantics and concrete language for continuous queries over streams and relations. Tech. Rep. http://dbpubs.stanford.edu/pub/2002-57 Stanford University. Nov. Arasu A. Babu S. and Widom J. 2002b. An abstract semantics and concrete language for continuous queries over streams and relations. Tech. Rep. http://dbpubs.stanford.edu/pub/2002-57 Stanford University. Nov.

4. Models and issues in data stream systems

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stream reasoning with DatalogMTL;Journal of Web Semantics;2023-04

2. Proactive and intelligent evaluation of big data queries in edge clouds with materialized views;Computer Networks;2022-02

3. sGrapp: Butterfly Approximation in Streaming Graphs;ACM Transactions on Knowledge Discovery from Data;2022-01-08

4. A Tutorial on Prototyping Internet of Things Devices and Systems: A Gentle Introduction to Technology that Shapes Our Lives;Communications of the Association for Information Systems;2022

5. Operationalizing Analytics with NewSQL;Software Engineering and Algorithms;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3