Anomaly Analysis in Images and Videos: A Comprehensive Review

Author:

Tran Tung Minh1ORCID,Vu Tu N.1ORCID,Vo Nguyen D.1ORCID,Nguyen Tam V.2ORCID,Nguyen Khang1ORCID

Affiliation:

1. University of Information Technology, Ho Chi Minh City, Vietnam and Vietnam National University, Ho Chi Minh City, Vietnam

2. University of Dayton, Dayton, Ohio, USA

Abstract

Anomaly analysis is an important component of any surveillance system. In recent years, it has drawn the attention of the computer vision and machine learning communities. In this article, our overarching goal is thus to provide a coherent and systematic review of state-of-the-art techniques and a comprehensive review of the research works in anomaly analysis. We will provide a broad vision of computational models, datasets, metrics, extensive experiments, and what anomaly analysis can do in images and videos. Intensively covering nearly 200 publications, we review (i) anomaly related surveys, (ii) taxonomy for anomaly problems, (iii) the computational models, (iv) the benchmark datasets for studying abnormalities in images and videos, and (v) the performance of state-of-the-art methods in this research problem. In addition, we provide insightful discussions and pave the way for future work.

Funder

National Science Foundation

Vietnam National University Ho Chi Minh City

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference199 articles.

1. Robust Real-Time Unusual Event Detection using Multiple Fixed-Location Monitors

2. NYC Open Data. 2014. Open Data for All New Yorkers. Retrieved from https://opendata.cityofnewyork.us/.

3. Human activity analysis

4. Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. 2018. Ganomaly: Semi-supervised anomaly detection via adversarial training. In Proceedings of the Asian Conference on Computer Vision (ACCV’18). 622–637.

5. Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3