ChestLive

Author:

Chen Yanjiao1,Xue Meng1,Zhang Jian1,Guan Qianyun1,Wang Zhiyuan1,Zhang Qian2,Wang Wei3

Affiliation:

1. Wuhan University, China

2. Hong Kong University of Science and Technology, China

3. Zhejiang University, China

Abstract

Voice-based authentication is prevalent on smart devices to verify the legitimacy of users, but is vulnerable to replay attacks. In this paper, we propose to leverage the distinctive chest motions during speaking to establish a secure multi-factor authentication system, named ChestLive. Compared with other biometric-based authentication systems, ChestLive does not require users to remember any complicated information (e.g., hand gestures, doodles) and the working distance is much longer (30cm). We use acoustic sensing to monitor chest motions with a built-in speaker and microphone on smartphones. To obtain fine-grained chest motion signals during speaking for reliable user authentication, we derive Channel Energy (CE) of acoustic signals to capture the chest movement, and then remove the static and non-static interference from the aggregated CE signals. Representative features are extracted from the correlation between voice signal and corresponding chest motion signal. Unlike learning-based image or speech recognition models with millions of available training samples, our system needs to deal with a limited number of samples from legitimate users during enrollment. To address this problem, we resort to meta-learning, which initializes a general model with good generalization property that can be quickly fine-tuned to identify a new user. We implement ChestLive as an application and evaluate its performance in the wild with 61 volunteers using their smartphones. Experiment results show that ChestLive achieves an authentication accuracy of 98.31% and less than 2% of false accept rate against replay attacks and impersonation attacks. We also validate that ChestLive is robust to various factors, including training set size, distance, angle, posture, phone models, and environment noises.

Funder

Guang-dong Natural Science Foundation

National Natural Science Foundation of China

Wuhan Application Advanced Funding

RGC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference37 articles.

1. UbiBreathe

2. Fadel Adib , Hongzi Mao , Zachary Kabelac , Dina Katabi , and Robert C. Miller . 2015. Smart Homes that Monitor Breathing and Heart Rate . In ACM Conference on Human Factors in Computing Systems - CHI '15 . Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C. Miller. 2015. Smart Homes that Monitor Breathing and Heart Rate. In ACM Conference on Human Factors in Computing Systems - CHI '15.

3. Empirical Wavelet Transform Based Lung Sound Removal from Phonocardiogram Signal for Heart Sound Segmentation

4. You Can Hear But You Cannot Steal: Defending Against Voice Impersonation Attacks on Smartphones

5. Continuous Authentication for Voice Assistants

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3