Location of the Maximum on Unimodal Surfaces

Author:

Newman D. J.1

Affiliation:

1. Yeshiva University, New York, New York

Abstract

Pinning down the maximum of a function in one or more variable is a basic computing problem. Without further a priori information regarding the nature of the function, of course, the problem is not feasible for computation. Thus if the function is permitted to oscillate infinitely often then no number of evaluations can give information regarding its maximum. J. Kiefer, in his paper, treats the one-dimensional problem and shows that the correct a priori assumption regarding the function is that of “unimodality.” He then gives the complete and exact optimal procedure within this framework. In this paper is given what the author believes is the correct a priori background for functions of several variables. (This is analogous to unimodality in one dimension.) However, there is not obtained the exactness of Kiefer's result, but rather the determination of the correct procedures to within “order of magnitude.”

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference3 articles.

1. Sequential minimax search for a maximum;KIEFER J;Proc. Amer. Math. Soc.,1953

2. GOODMAN R. Machine Program 600-239. Sylvania Electronics Needham Mass. GOODMAN R. Machine Program 600-239. Sylvania Electronics Needham Mass.

3. The centroid of a convexbody;HAMMER P.C;Proc. Amer. Math. Soc.,1951

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse Submodular Function Minimization;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. Learning From Human Directional Corrections;IEEE Transactions on Robotics;2023-02

3. Minimizing Convex Functions with Rational Minimizers;Journal of the ACM;2022-12-19

4. Nearly Optimal Communication and Query Complexity of Bipartite Matching;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

5. Subgradient ellipsoid method for nonsmooth convex problems;Mathematical Programming;2022-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3