A model for concurrency in nested transactions systems

Author:

Beeri Catriel1,Bernstein Philip A.2,Goodman Nathan3

Affiliation:

1. Hebrew Univ. of Jerusalem, Jerusalem, Israel

2. Digital Equipment Corp., Cambridge, MA

3. Codd and Date International, San Jose, CA

Abstract

Today's standard model for database concurrency control, called serializability theory, represents executions of transactions as partial orders of operations. The theory tells when an execution is serializable, that is, when the set of operations of a transaction execute atomically with respect to those of other transactions. It has been used successfully to prove correctness of most database concurrency control algorithms. Its most serious limitation is its inability to represent nested computations conveniently. This paper presents a more general model that permits nested transactions. In this model, transactions may execute subtransactions, giving rise to tree-structured computations. A serializability theory is developed for this model, which can be used to prove the correctness of concurrency control algorithms for nested transactions and for multilevel database systems. The theory is based on an abstract model of computation that allows arbitrary operations, and parallel and even nondeterministic programs. Axioms are presented that express the basic properties that programs that manage or access data need to satisfy. We use these axioms to derive proof techniques. One new technique—substitution—shows the equivalence of two executions by substituting one subcomputation by another, usually shallower (i.e., less nested), one. Our proof techniques are illustrated by applying them to several well-known concurrency control problems.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chocola;ACM Transactions on Programming Languages and Systems;2021-02

2. Parallel Database Systems;Principles of Distributed Database Systems;2019-12-03

3. Database Integration—Multidatabase Systems;Principles of Distributed Database Systems;2019-12-03

4. Distributed Transaction Processing;Principles of Distributed Database Systems;2019-12-03

5. Web Data Management;Principles of Distributed Database Systems;2019-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3