FLASH vs. (Simulated) FLASH

Author:

Gibson Jeff1,Kunz Robert1,Ofelt David1,Horowitz Mark1,Hennessy John1,Heinrich Mark2

Affiliation:

1. Computer Systems Lab, Stanford University, Stanford, CA

2. Computer Systems Lab, School of Electrical & Computer Engineering, Cornell University, Ithaca, NY

Abstract

Simulation is the primary method for evaluating computer systems during all phases of the design process. One significant problem with simulation is that it rarely models the system exactly, and quantifying the resulting simulator error can be difficult. More importantly, architects often assume without proof that although their simulator may make inaccurate absolute performance predictions, it will still accurately predict architectural trends.This paper studies the source and magnitude of error in a range of architectural simulators by comparing the simulated execution time of several applications and microbenchmarks to their execution time on the actual hardware being modeled. The existence of a hardware gold standard allows us to find, quantify, and fix simulator inaccuracies. We then use the simulators to predict architectural trends and analyze the sensitivity of the results to the simulator configuration. We find that most of our simulators predict trends accurately, as long as they model all of the important performance effects for the application in question. Unfortunately, it is difficult to know what these effects are without having a hardware reference, as they can be quite subtle. This calls into question the value, for architectural studies, of highly detailed simulators whose characteristics are not carefully validated against s real hardware design.

Publisher

Association for Computing Machinery (ACM)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AccelWattch: A Power Modeling Framework for Modern GPUs;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

2. Semi-automatic validation of cycle-accurate simulation infrastructures: The case for gem5-x86;Future Generation Computer Systems;2020-11

3. A Storage Device Emulator for System Performance Evaluation;ACM Transactions on Embedded Computing Systems;2015-12-08

4. Bibliography;Embedded Multi-Core Systems;2013-07-18

5. HIGH LATENCY AND CONTENTION ON SHARED L2-CACHE FOR MANY-CORE ARCHITECTURES;Parallel Processing Letters;2011-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3