Pure pointer programs with iteration

Author:

Hofmann Martin1,Schöpp Ulrich1

Affiliation:

1. Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Many logspace algorithms are naturally described as programs that operate on a structured input (e.g., a graph), that store in memory only a constant number of pointers (e.g., to graph nodes) and that do not use pointer arithmetic. Such “pure pointer algorithms” thus are a useful abstraction for studying the nature of logspace-computation. In this article, we introduce a formal class purple of pure pointer programs and study them on locally ordered graphs. Existing classes of pointer algorithms, such as Jumping Automata on Graphs (jags) or Deterministic Transitive Closure (dtc) logic, often exclude simple programs. purple subsumes these classes and allows for a natural representation of many graph algorithms that access the input graph using a constant number of pure pointers. It does so by providing a primitive for iterating an algorithm over all nodes of the input graph in an unspecified order. Since pointers are given as an abstract data type rather than as binary digits we expect that logarithmic-size worktapes cannot be encoded using pointers as is done, for example, in totally ordered dtc-logic. We show that this is indeed the case by proving that the property “the number of nodes is a power of two,” which is in logspace, is not representable in purple.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pointers in Recursion: Exploring the Tropics;Electronic Proceedings in Theoretical Computer Science;2019-08-14

2. A type-based complexity analysis of Object Oriented programs;Information and Computation;2018-08

3. Objects in Polynomial Time;Programming Languages and Systems;2015

4. Evolving Graph-Structures and Their Implicit Computational Complexity;Automata, Languages, and Programming;2013

5. Pure Pointer Programs and Tree Isomorphism;Lecture Notes in Computer Science;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3