Affiliation:
1. Max Planck Institute for Informatics, Saarbrücken, Germany
Abstract
Superposition is an established decision procedure for a variety of first-order logic theories represented by sets of clauses. A satisfiable theory, saturated by superposition, implicitly defines a minimal term-generated model for the theory. Proving universal properties with respect to a saturated theory directly leads to a modification of the minimal model's term-generated domain, as new Skolem functions are introduced. For many applications, this is not desired.
Therefore, we propose the first superposition calculus that can explicitly represent existentially quantified variables and can thus compute with respect to a given domain. This calculus is sound and refutationally complete in the limit for a first-order fixed domain semantics. For saturated Horn theories and classes of positive formulas, we can even employ the calculus to prove properties of the minimal model itself, going beyond the scope of known superposition-based approaches.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献