Memory-Efficient and Flexible Detection of Heavy Hitters in High-Speed Networks

Author:

Huang He1ORCID,Yu Jiakun1ORCID,Du Yang1ORCID,Liu Jia2ORCID,Dai Haipeng2ORCID,Sun Yu-E1ORCID

Affiliation:

1. Soochow University, Suzhou, China

2. Nanjing University, Nanjing, China

Abstract

Heavy-hitter detection is a fundamental task in network traffic measurement and security. Existing work faces the dilemma of suffering dynamic and imbalanced traffic characteristics or lowering the detection efficiency and flexibility. In this paper, we propose a flexible sketch called SwitchSketch that embraces dynamic and skewed traffic for efficient and accurate heavy-hitter detection. The key idea of SwitchSketch is allowing the sketch to dynamically switch among different modes and take full use of each bit of the memory. We present an encoding-based switching scheme together with a flexible bucket structure to jointly achieve this goal by using a combination of design features, including variable-length cells, shrunk counters, embedded metadata, and switchable modes. We further implement SwitchSketch on the NetFPGA-1G-CML board. Experimental results based on real Internet traces show that SwitchSketch achieves a high Fβ-Score of threshold-t detection (consistently higher than 0.938) and over 99% precision rate of top-k detection under a tight memory size (e.g., 100KB). Besides, it outperforms the state-of-the-art by reducing the ARE by 30.77%\sim99.96%. All related implementations are open-sourced.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference31 articles.

1. SALSA: Self-Adjusting Lean Streaming Analytics

2. CAIDA. 2016. The CAIDA UCSD Anonymized Internet Traces 2016 . http://www.caida.org/data/passive/passive_2016_dataset.xml. Accessed : 2019--7--28. CAIDA. 2016. The CAIDA UCSD Anonymized Internet Traces 2016. http://www.caida.org/data/passive/passive_2016_dataset.xml. Accessed: 2019--7--28.

3. CAIDA. 2019. The CAIDA UCSD Anonymized Internet Traces 2019 . https://catalog.caida.org/details/dataset/passive_2019_pcap. Accessed: 2021--12--27. CAIDA. 2019. The CAIDA UCSD Anonymized Internet Traces 2019. https://catalog.caida.org/details/dataset/passive_2019_pcap. Accessed: 2021--12--27.

4. Finding Frequent Items in Data Streams

5. Cloudflare. 2023. Cloudflare General Recommendations for Sampling Rates. https://developers.cloudflare.com/magic-network-monitoring/routers/recommended-sampling-rate/. Cloudflare. 2023. Cloudflare General Recommendations for Sampling Rates. https://developers.cloudflare.com/magic-network-monitoring/routers/recommended-sampling-rate/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3