New Multi-View Classification Method with Uncertain Data

Author:

Liu Bo1,Zhong Haowen1,Xiao Yanshan1

Affiliation:

1. Guangdong University of Technology, Guangzhou, China

Abstract

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.

Funder

Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Science and TechnologyPlanning Project of Guangzhou

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference73 articles.

1. A survey of uncertain data algorithms and applications;Aggarwal Charu C.;IEEE Transactions on Knowledge and Data Engineering,2009

2. A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems;Ahmadian Sajad;Multimedia Tools and Applications,2019

3. A co-training strategy for multiple view clustering in process mining;Appice Annalisa;IEEE Transactions on Services Computing,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GAF-Net: Graph attention fusion network for multi-view semi-supervised classification;Expert Systems with Applications;2024-03

2. A Multi-View Learning Approach for Detecting Personality Disorders Among Arab Social Media Users;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3