Active Balancing Mechanism for Imbalanced Medical Data in Deep Learning–Based Classification Models

Author:

Zhang Hongyi1,Zhang Haoke1,Pirbhulal Sandeep2,Wu Wanqing3ORCID,Albuquerque Victor Hugo C. De4

Affiliation:

1. Xiamen University of Technology, Xiamen, China

2. Chinese Academy of Sciences, Guangzhou, China

3. Sun Yat-Sen University, Guangzhou, China

4. University of Fortaleza, Fortaleza, Brazil

Abstract

Imbalanced data always has a serious impact on a predictive model, and most under-sampling techniques consume more time and suffer from loss of samples containing critical information during imbalanced data processing, especially in the biomedical field. To solve these problems, we developed an active balancing mechanism (ABM) based on valuable information contained in the biomedical data. ABM adopts the Gaussian naïve Bayes method to estimate the object samples and entropy as a query function to evaluate sample information and only retains valuable samples of the majority class to achieve under-sampling. The Physikalisch Technische Bundesanstalt diagnostic electrocardiogram (ECG) database, including 5,173 normal ECG samples and 26,654 myocardial infarction ECG samples, is applied to verify the validity of ABM. At imbalance rates of 13 and 5, experimental results reveal that ABM takes 7.7 seconds and 13.2 seconds, respectively. Both results are significantly faster than five conventional under-sampling methods. In addition, at the imbalance rate of 13, ABM-based data obtained the highest accuracy of 92.23% and 97.52% using support vector machines and modified convolutional neural networks (MCNNs) with eight layers, respectively. At the imbalance rate of 5, the processed data by ABM also achieved the best accuracy of 92.31% and 98.46% based on support vector machines and MCNNs, respectively. Furthermore, ABM has better performance than two compared methods in F 1-measure, G-means, and area under the curve. Consequently, ABM could be a useful and effective approach to deal with imbalanced data in general, particularly biomedical myocardial infarction ECG datasets, and the MCNN can also achieve higher performance compared to the state of the art.

Funder

Guangdong Province Natural Science Fund

Brazilian National Council for Research and Development CNPq

Guangzhou Science and Technology Planning

General Logistics Department of PLA

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3