Affiliation:
1. Xiamen University of Technology, Xiamen, China
2. Chinese Academy of Sciences, Guangzhou, China
3. Sun Yat-Sen University, Guangzhou, China
4. University of Fortaleza, Fortaleza, Brazil
Abstract
Imbalanced data always has a serious impact on a predictive model, and most under-sampling techniques consume more time and suffer from loss of samples containing critical information during imbalanced data processing, especially in the biomedical field. To solve these problems, we developed an active balancing mechanism (ABM) based on valuable information contained in the biomedical data. ABM adopts the Gaussian naïve Bayes method to estimate the object samples and entropy as a query function to evaluate sample information and only retains valuable samples of the majority class to achieve under-sampling. The Physikalisch Technische Bundesanstalt diagnostic electrocardiogram (ECG) database, including 5,173 normal ECG samples and 26,654 myocardial infarction ECG samples, is applied to verify the validity of ABM. At imbalance rates of 13 and 5, experimental results reveal that ABM takes 7.7 seconds and 13.2 seconds, respectively. Both results are significantly faster than five conventional under-sampling methods. In addition, at the imbalance rate of 13, ABM-based data obtained the highest accuracy of 92.23% and 97.52% using support vector machines and modified convolutional neural networks (MCNNs) with eight layers, respectively. At the imbalance rate of 5, the processed data by ABM also achieved the best accuracy of 92.31% and 98.46% based on support vector machines and MCNNs, respectively. Furthermore, ABM has better performance than two compared methods in
F
1-measure, G-means, and area under the curve. Consequently, ABM could be a useful and effective approach to deal with imbalanced data in general, particularly biomedical myocardial infarction ECG datasets, and the MCNN can also achieve higher performance compared to the state of the art.
Funder
Guangdong Province Natural Science Fund
Brazilian National Council for Research and Development CNPq
Guangzhou Science and Technology Planning
General Logistics Department of PLA
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献