Implementing Dense Optical Flow Computation on a Heterogeneous FPGA SoC in C

Author:

Chen Wenjie1,Wang Zhibin2,Wu Qin2,Liang Jiuzhen2,Chai Zhilei2

Affiliation:

1. East China Normal University, Shanghai, China

2. Jiangnan University, Wuxi, China

Abstract

High-quality optical flow computation algorithms are computationally intensive. The low computational speed of such algorithms causes difficulties for real-world applications. In this article, we propose an optimized implementation of the classical Combine-Brightness-Gradient (CBG) model on the Xilinx ZYNQ FPGA-SoC, by taking advantage of the inherent algorithmic parallelism and ZYNQ architecture. The execution time decreases to 0.82 second with a lower power consumption (1.881W). It is better than software implementation on PC (Intel i7-3520M, 2.9GHz), which costs 2.635 seconds and 35W. We use C rather than HDLs to describe the algorithm for rapid prototyping.

Funder

National High Technology Research and Development Program of China

111 Project

NSF of China

the Shanghai Natural Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Saliency-Induced Moving Object Detection for Robust RGB-D Vision Navigation Under Complex Dynamic Environments;IEEE Transactions on Intelligent Transportation Systems;2023-10

2. An acceleration method of optical flow calculation for automotive ADAS;2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2022-12

3. FPGA-Based ROI Encoding for HEVC Video Bitrate Reduction;Journal of Circuits, Systems and Computers;2020-02-05

4. A High-Performance Dense Optical Flow Architecture Based on Red-Black SOR Solver;Journal of Signal Processing Systems;2019-11-13

5. Video Saliency Detection via Graph Clustering With Motion Energy and Spatiotemporal Objectness;IEEE Transactions on Multimedia;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3