Curiosity Creates Diversity in Policy Search

Author:

Le Tolguenec Paul-Antoine1ORCID,Rachelson Emmanuel2ORCID,Besse Yann3ORCID,Wilson Dennis G.2ORCID

Affiliation:

1. ISAE-Supaero, Université de Toulouse, Airbus, France

2. ISAE-Supaero, Université de Toulouse, France

3. Airbus, France

Abstract

When searching for policies, reward-sparse environments often lack sufficient information about which behaviors to improve upon or avoid. In such environments, the policy search process is bound to blindly search for reward-yielding transitions and no early reward can bias this search in one direction or another. A way to overcome this is to use intrinsic motivation in order to explore new transitions until a reward is found. In this work, we use a recently proposed definition of intrinsic motivation, Curiosity, in an evolutionary policy search method. We propose Curiosity-ES, 1 an evolutionary strategy adapted to use Curiosity as a fitness metric. We compare Curiosity-ES with other evolutionary algorithms intended for exploration, as well as with Curiosity-based reinforcement learning, and find that Curiosity-ES can generate higher diversity without the need for an explicit diversity criterion and leads to more policies which find reward.

Publisher

Association for Computing Machinery (ACM)

Subject

Process Chemistry and Technology,Economic Geology,Fuel Technology

Reference45 articles.

1. Ferran Alet Martin F. Schneider Tomás Lozano-Pérez and Leslie Pack Kaelbling. 2020. Meta-learning curiosity algorithms. (2020).

2. Hindsight experience replay;Andrychowicz Marcin;Advances in Neural Information Processing Systems,2017

3. A survey on intrinsic motivation in reinforcement learning;Aubret Arthur;arXiv preprint arXiv:1908.06976,2019

4. Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles Blundell. 2020. Never give up: Learning directed exploration strategies. In International Conference on Learning Representations. https://openreview.net/forum?id=Sye57xStvB.

5. R-max-a general polynomial time algorithm for near-optimal reinforcement learning;Brafman Ronen I.;Journal of Machine Learning Research,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper);Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Summary of "Curiosity creates Diversity in Policy Search";Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3