Affiliation:
1. University of Delaware
2. Microsoft Corporation
3. University of Illinois at Urbana-Champaign
Abstract
Developing effective retrieval models is a long-standing central challenge in information retrieval research. In order to develop more effective models, it is necessary to understand the deficiencies of the current retrieval models and the relative strengths of each of them. In this article, we propose a general methodology to
analytically
and
experimentally
diagnose the weaknesses of a retrieval function, which provides guidance on how to further improve its performance. Our methodology is motivated by the empirical observation that good retrieval performance is closely related to the use of various retrieval heuristics. We connect the weaknesses and strengths of a retrieval function with its implementations of these retrieval heuristics, and propose two strategies to check how well a retrieval function implements the desired retrieval heuristics. The first strategy is to formalize heuristics as constraints, and use constraint analysis to analytically check the implementation of retrieval heuristics. The second strategy is to define a set of relevance-preserving perturbations and perform diagnostic tests to empirically evaluate how well a retrieval function implements retrieval heuristics. Experiments show that both strategies are effective to identify the potential problems in implementations of the retrieval heuristics. The performance of retrieval functions can be improved after we fix these problems.
Funder
Division of Information and Intelligent Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献