Connectivity-based localization of large-scale sensor networks with complex shape

Author:

Lederer Sol1,Wang Yue1,Gao Jie1

Affiliation:

1. Stony Brook University, Stony Brook, NY

Abstract

We study the problem of localizing a large sensor network having a complex shape, possibly with holes. A major challenge with respect to such networks is to figure out the correct network layout, that is, avoid global flips where a part of the network folds on top of another. Our algorithm first selects landmarks on network boundaries with sufficient density, then constructs the landmark Voronoi diagram and its dual combinatorial Delaunay complex on these landmarks. The key insight is that the combinatorial Delaunay complex is provably globally rigid and has a unique realization in the plane. Thus an embedding of the landmarks by simply gluing the Delaunay triangles properly recovers the faithful network layout. With the landmarks nicely localized, the rest of the nodes can easily localize themselves by trilateration to nearby landmark nodes. This leads to a practical and accurate localization algorithm for large networks using only network connectivity. Simulations on various network topologies show surprisingly good results. In comparison, previous connectivity-based localization algorithms such as multidimensional scaling and rubberband representation generate globally flipped or distorted localization results.

Funder

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3