An evolutionary algorithm for discovering multi-relational association rules in the semantic web
Author:
Affiliation:
1. Université Côte d'Azur, Inria, France
2. University of Bari, Italy
3. The University of Danang - University of Science and Technology, Vietnam
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3071178.3079196
Reference20 articles.
1. Mining association rules between sets of items in large databases
2. F. Baader D. Calvanese D. L. McGuinness D. Nardi and P. F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory Implementation and Applications. Cambridge Univ. Press. F. Baader D. Calvanese D. L. McGuinness D. Nardi and P. F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory Implementation and Applications . Cambridge Univ. Press.
3. T. Berners-Lee J. Hendler and O. Lassila. 2001. The Semantic Web. Scientific American (2001). T. Berners-Lee J. Hendler and O. Lassila. 2001. The Semantic Web. Scientific American (2001).
4. Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases
5. C. d'Amato A. Tettamanzi and D. M. Tran. 2016. Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases. In EKAW. 113--128. 10.1007/978-3-319-49004-5_8 C. d'Amato A. Tettamanzi and D. M. Tran. 2016. Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases. In EKAW . 113--128. 10.1007/978-3-319-49004-5_8
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Methods for concept analysis and multi-relational data mining: a systematic literature review;Knowledge and Information Systems;2024-05-30
2. Mining RDF Data of COVID-19 Scientific Literature for Interesting Association Rules;2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2020-12
3. Mining Latent Features of Knowledge Graphs for Predicting Missing Relations;Lecture Notes in Computer Science;2020
4. Comparing Rule Evaluation Metrics for the Evolutionary Discovery of Multi-relational Association Rules in the Semantic Web;Lecture Notes in Computer Science;2018
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3