Affiliation:
1. National Cheng Kung University, Taiwan, ROC
2. Pennsylvania State University, University Park, PA
Abstract
In recent years, research on location predictions by mining trajectories of users has attracted a lot of attention. Existing studies on this topic mostly treat such predictions as just a type of location recommendation, that is, they predict the next location of a user using location recommenders. However, an user usually visits somewhere for reasons other than interestingness. In this article, we propose a novel mining-based location prediction approach called
Geographic-Temporal-Semantic-based Location Prediction (GTS-LP),
which takes into account a user's geographic-triggered intentions, temporal-triggered intentions, and semantic-triggered intentions, to estimate the probability of the user in visiting a location. The core idea underlying our proposal is the discovery of trajectory patterns of users, namely
GTS patterns
, to capture frequent movements triggered by the three kinds of intentions. To achieve this goal, we define a new trajectory pattern to capture the key properties of the behaviors that are motivated by the three kinds of intentions from trajectories of users. In our
GTS-LP
approach, we propose a series of novel matching strategies to calculate the similarity between the current movement of a user and discovered GTS patterns based on various moving intentions. On the basis of similitude, we make an online prediction as to the location the user intends to visit. To the best of our knowledge, this is the first work on location prediction based on trajectory pattern mining that explores the geographic, temporal, and semantic properties simultaneously. By means of a comprehensive evaluation using various real trajectory datasets, we show that our proposed
GTS-LP
approach delivers excellent performance and significantly outperforms existing state-of-the-art location prediction methods.
Funder
National Science Council Taiwan
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Reference37 articles.
1. Alvares L. O. Bogorny V. Palma A. Kuijpers B. Moelans B. and Macedo. J. A. F. 2007. Towards semantic trajectory knowledge discovery. Tech. rep. Hasselt University Belgium. http://hdl.handle.net/1942/1832 Alvares L. O. Bogorny V. Palma A. Kuijpers B. Moelans B. and Macedo. J. A. F. 2007. Towards semantic trajectory knowledge discovery. Tech. rep. Hasselt University Belgium. http://hdl.handle.net/1942/1832
2. ST‐DMQL: A Semantic Trajectory Data Mining Query Language
3. Find me if you can
4. Eigenbehaviors: identifying structure in routine
5. Cost-aware travel tour recommendation
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献