Mining geographic-temporal-semantic patterns in trajectories for location prediction

Author:

Ying Josh Jia-Ching1,Lee Wang-Chien2,Tseng Vincent S.1

Affiliation:

1. National Cheng Kung University, Taiwan, ROC

2. Pennsylvania State University, University Park, PA

Abstract

In recent years, research on location predictions by mining trajectories of users has attracted a lot of attention. Existing studies on this topic mostly treat such predictions as just a type of location recommendation, that is, they predict the next location of a user using location recommenders. However, an user usually visits somewhere for reasons other than interestingness. In this article, we propose a novel mining-based location prediction approach called Geographic-Temporal-Semantic-based Location Prediction (GTS-LP), which takes into account a user's geographic-triggered intentions, temporal-triggered intentions, and semantic-triggered intentions, to estimate the probability of the user in visiting a location. The core idea underlying our proposal is the discovery of trajectory patterns of users, namely GTS patterns , to capture frequent movements triggered by the three kinds of intentions. To achieve this goal, we define a new trajectory pattern to capture the key properties of the behaviors that are motivated by the three kinds of intentions from trajectories of users. In our GTS-LP approach, we propose a series of novel matching strategies to calculate the similarity between the current movement of a user and discovered GTS patterns based on various moving intentions. On the basis of similitude, we make an online prediction as to the location the user intends to visit. To the best of our knowledge, this is the first work on location prediction based on trajectory pattern mining that explores the geographic, temporal, and semantic properties simultaneously. By means of a comprehensive evaluation using various real trajectory datasets, we show that our proposed GTS-LP approach delivers excellent performance and significantly outperforms existing state-of-the-art location prediction methods.

Funder

National Science Council Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference37 articles.

1. Alvares L. O. Bogorny V. Palma A. Kuijpers B. Moelans B. and Macedo. J. A. F. 2007. Towards semantic trajectory knowledge discovery. Tech. rep. Hasselt University Belgium. http://hdl.handle.net/1942/1832 Alvares L. O. Bogorny V. Palma A. Kuijpers B. Moelans B. and Macedo. J. A. F. 2007. Towards semantic trajectory knowledge discovery. Tech. rep. Hasselt University Belgium. http://hdl.handle.net/1942/1832

2. ST‐DMQL: A Semantic Trajectory Data Mining Query Language

3. Find me if you can

4. Eigenbehaviors: identifying structure in routine

5. Cost-aware travel tour recommendation

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3