A framework of traveling companion discovery on trajectory data streams

Author:

Tang Lu-An1,Zheng Yu2,Yuan Jing2,Han Jiawei3,Leung Alice4,Peng Wen-Chih5,Porta Thomas La6

Affiliation:

1. University of Illinois at Urbana-Champaign and Microsoft Research Asia

2. Microsoft Research Asia

3. University of Illinois at Urbana-Champaign, Champaign, IL

4. BBN Technologies

5. National Chiao Tung University, Taiwan, ROC

6. Pennsylvania State University, University Park PA

Abstract

The advance of mobile technologies leads to huge volumes of spatio-temporal data collected in the form of trajectory data streams. In this study, we investigate the problem of discovering object groups that travel together (i.e., traveling companions ) from trajectory data streams. Such technique has broad applications in the areas of scientific study, transportation management, and military surveillance. To discover traveling companions, the monitoring system should cluster the objects of each snapshot and intersect the clustering results to retrieve moving-together objects. Since both clustering and intersection steps involve high computational overhead, the key issue of companion discovery is to improve the efficiency of algorithms. We propose the models of closed companion candidates and smart intersection to accelerate data processing. A data structure termed traveling buddy is designed to facilitate scalable and flexible companion discovery from trajectory streams. The traveling buddies are microgroups of objects that are tightly bound together. By only storing the object relationships rather than their spatial coordinates, the buddies can be dynamically maintained along the trajectory stream with low cost. Based on traveling buddies, the system can discover companions without accessing the object details. In addition, we extend the proposed framework to discover companions on more complicated scenarios with spatial and temporal constraints, such as on the road network and battlefield. The proposed methods are evaluated with extensive experiments on both real and synthetic datasets. Experimental results show that our proposed buddy-based approach is an order of magnitude faster than the baselines and achieves higher accuracy in companion discovery.

Funder

Division of Computer and Network Systems

U.S. Army Research Laboratory

Division of Information and Intelligent Systems

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3