Affiliation:
1. Institute of Computing Technology, Chinese Academy of Sciences
2. Nanjing University, Nanjing, China
3. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
Abstract
Ever-increasing design complexity and advances of technology impose great challenges on the design of modern microprocessors. One such challenge is to determine promising microprocessor configurations to meet specific design constraints, which is called Design Space Exploration (DSE). In the computer architecture community, supervised learning techniques have been applied to DSE to build regression models for predicting the qualities of design configurations. For supervised learning, however, considerable simulation costs are required for attaining the labeled design configurations. Given limited resources, it is difficult to achieve high accuracy. In this article, inspired by recent advances in semisupervised learning and active learning, we propose the COAL approach which can exploit unlabeled design configurations to significantly improve the models. Empirical study demonstrates that COAL significantly outperforms a state-of-the-art DSE technique by reducing mean squared error by 35% to 95%, and thus, promising architectures can be attained more efficiently.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Ministry of Science and Technology of the People's Republic of China
National S&T Major Project of China
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献