How Is the Stroke? Inferring Shot Influence in Badminton Matches via Long Short-term Dependencies

Author:

Wang Wei-Yao1ORCID,Chan Teng-Fong1ORCID,Peng Wen-Chih1ORCID,Yang Hui-Kuo1ORCID,Wang Chih-Chuan1ORCID,Fan Yao-Chung2ORCID

Affiliation:

1. National Yang Ming Chiao Tung University, Hsinchu, Taiwan

2. National Chung Hsing University, Taiwan

Abstract

Identifying significant shots in a rally is important for evaluating players’ performance in badminton matches. While there are several studies that have quantified player performance in other sports, analyzing badminton data has remained untouched. In this article, we introduce a badminton language to fully describe the process of the shot, and we propose a deep-learning model composed of a novel short-term extractor and a long-term encoder for capturing a shot-by-shot sequence in a badminton rally by framing the problem as predicting a rally result. Our model incorporates an attention mechanism to enable the transparency between the action sequence and the rally result, which is essential for badminton experts to gain interpretable predictions. Experimental evaluation based on a real-world dataset demonstrates that our proposed model outperforms the strong baselines. We also conducted case studies to show the ability to enhance players’ decision-making confidence and to provide advanced insights for coaching, which benefits the badminton analysis community and bridges the gap between the field of badminton and computer science.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference53 articles.

1. Notational singles match analysis of male badminton players who participated in the African Badminton Championships

2. Lei Jimmy Ba Jamie Ryan Kiros and Geoffrey E. Hinton. 2016. Layer normalization. Retrieved from https://arxiv.org/abs/1607.06450.

3. Artificial intelligence for team sports: a survey

4. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS’20).

5. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3