Controllable Tabular Data Synthesis Using Diffusion Models

Author:

Liu Tongyu1ORCID,Fan Ju1ORCID,Tang Nan2ORCID,Li Guoliang3ORCID,Du Xiaoyong1ORCID

Affiliation:

1. Renmin University of China, Beijing, China

2. HKUST (GZ), Guangzhou, China

3. Tsinghua University, Beijing, China

Abstract

Controllable tabular data synthesis plays a crucial role in numerous applications by allowing users to generate synthetic data with specific conditions. These conditions can include synthesizing tuples with predefined attribute values or creating tuples that exhibit a particular correlation with an external table. However, existing approaches lack the flexibility to support new conditions and can be time-consuming when dealing with multiple conditions. To overcome these limitations, we propose a novel approach that leverages diffusion models to first learn an unconditional generative model. Subsequently, we introduce lightweight controllers to guide the unconditional generative model in generating synthetic data that satisfies different conditions. The primary research challenge lies in effectively supporting controllability using lightweight solutions while ensuring the realism of the synthetic data. To address this challenge, we design an unconditional diffusion model tailored specifically for tabular data. Additionally, we propose a new sampling method that enables correlation-aware controls throughout the data generation process. We conducted extensive experiments across various applications for controllable tabular data synthesis, which show that our approach outperforms the state-of-the-art methods.

Publisher

Association for Computing Machinery (ACM)

Reference72 articles.

1. [n. d.]. Airbnb Data Set. https://public.opendatasoft.com/explore/dataset/airbnb-listings.

2. [n. d.]. Default Data Set. https://archive.ics.uci.edu/dataset/350/defaultofcreditcardclients.

3. [n. d.]. Heart Data Set. https://www.openml.org/data/download/6358/BNG_heart-statlog.arff.

4. [n. d.]. Imdb Data Set. http://homepages.cwi.nl/~boncz/job/imdb.tgz.

5. [n. d.]. WeatherAUS Data Set. https://www.kaggle.com/jsphyg/weather-dataset-rattle-package.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3