Symmetrical Residual Connections for Single Image Super-Resolution

Author:

Li Xianguo1ORCID,Sun Yemei1,Yang Yanli1,Miao Changyun1

Affiliation:

1. Tianjin Polytechnic University; Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin, China

Abstract

Single-image super-resolution (SISR) methods based on convolutional neural networks (CNN) have shown great potential in the literature. However, most deep CNN models don’t have direct access to subsequent layers, seriously hindering the information flow. Furthermore, they fail to make full use of the hierarchical features from different low-level layers, thereby resulting in relatively low accuracy. In this article, we present a new SISR CNN, called SymSR, which incorporates symmetrical nested residual connections to improve both the accuracy and the execution speed. SymSR takes a larger image region for contextual spreading. It symmetrically combines multiple short paths for the forward propagation to improve the accuracy and for the backward propagation of gradient flow to accelerate the convergence speed. Extensive experiments based on open challenge datasets show the effectiveness of symmetrical residual connections. Compared with four other state-of-the-art super-resolution CNN methods, SymSR is superior in both accuracy and runtime.

Funder

Tianjin Research Program of Application Foundation and Advanced Technology

Program for Innovative Research Team in University of Tianjin

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3