Algorithm 1043: Faster Randomized SVD with Dynamic Shifts

Author:

Feng Xu1ORCID,Yu Wenjian1ORCID,Xie Yuyang1ORCID,Tang Jie1ORCID

Affiliation:

1. Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China

Abstract

Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e., for computing a few of the largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a d yn a mic sh ifts-based randomized SVD (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of a randomized SVD algorithm or attains the same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference34 articles.

1. AMiner. 2021. Aminer. Retrieved from https://www.aminer.cn

2. Intel. 2021. Intel oneAPI Math Kernel Library. Retrieved from https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

3. The University of Texas at Austin. 2021. RandQR. Retrieved from https://users.oden.utexas.edu/pgm/Codes/randqb_codes_intel_mkl.zip

4. GitHub. 2022. frPCA_sparse. Retrieved from https://github.com/XuFengthucs/frPCA_sparse

5. GitHub. 2022. Primme. Retrieved from https://github.com/primme/primme

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3